Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons

نویسندگان

  • Greg Stuart
  • Bert Sakmann
چکیده

Simultaneous somatic and dendritic recordings were made from the same neocortical layer V pyramidal neuron, and current injection via the dendritic recording pipette was used to simulate the voltage change that occurs during an EPSP. At the soma, these simulated EPSPs increased nonlinearly with the amplitude of the dendritic current injection and with depolarization of the membrane potential. Bath application of the sodium channel blocker TTX decreased large (> 5 mV) EPSPs and also blocked amplification of EPSPs at depolarized membrane potentials, whereas calcium channel blockers had little effect. Local application of TTX to the soma and axon blocked EPSP amplification, whereas dendritic application had little effect. Simultaneous somatic and axonal recordings demonstrated that EPSP amplification was largest in the axon. These results show that EPSPs are amplified by voltage-activated sodium channels located close to the soma and in the axon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons.

Neocortical layer 5 pyramidal neurons possess long apical dendrites that receive a significant portion of the neurons excitatory synaptic input. Passive neuronal models indicate that the time course of excitatory postsynaptic potentials (EPSPs) generated in the apical dendrite will be prolonged as they propagate toward the soma. EPSP propagation may, however, be influenced by the recruitment of...

متن کامل

Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex.

The role of voltage-dependent channels in shaping subthreshold excitatory postsynaptic potentials (EPSPs) in neocortical layer 5 pyramidal neurons from rat medial prefrontal cortex (PFC) was investigated using patch-clamp recordings from visually identified neurons in brain slices. Small-amplitude EPSPs evoked by stimulation of superficial layers were not affected by the N-methyl-D-aspartate re...

متن کامل

RAPID COMMUNICATION Amplification of EPSPs by Low Ni- and Amiloride-Sensitive Ca Channels in Apical Dendrites of Rat CA1 Pyramidal Neurons

Gillessen, Thomas and Christian Alzheimer. Amplification of aging experiments showed that dendritic LVA channels of EPSPs by low Niand amiloride-sensitive Ca channels in apihippocampal and neocortical pyramidal cells are activated by cal dendrites of rat CA1 pyramidal neurons. J. Neurophysiol. 77: subthreshold membrane depolarization (Magee and Johnston 1639–1643, 1997. Distal synaptic input to...

متن کامل

Function of NMDA receptors and persistent sodium channels in a feedback pathway of the electrosensory system.

Voltage-dependent amplification of ionotropic glutamatergic excitatory postsynaptic potentials (EPSPs) can, in many vertebrate neurons, be due either to the intrinsic voltage dependence of N-methyl-D-aspartate (NMDA) receptors, or voltage-dependent persistent sodium channels expressed on postsynaptic dendrites or somata. In the electrosensory lateral line lobe (ELL) of the gymnotiform fish Apte...

متن کامل

Backpropagation of physiological spike trains in neocortical pyramidal neurons: implications for temporal coding in dendrites.

In vivo neocortical neurons fire apparently random trains of action potentials in response to sensory stimuli. Does this randomness represent a signal or noise around a mean firing rate? Here we use the timing of action potential trains recorded in vivo to explore the dendritic consequences of physiological patterns of action potential firing in neocortical pyramidal neurons in vitro. We find t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1995